Mathematical Pointillism
v = 106
Pointillism sciences IT mathematics
- In mathematics field, relative to spots, dots science : included spots constraints
Normal metric :
,
$$d(A,B)= || \overrightarrow{AB}||_2 = || \overrightarrow{B}-\overrightarrow{A}||_2 =\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}$$
Proposition(
R : radius of sphere
Exhaustive for comprehension
$$x = d(U,V)\cdot cos(U)$$,$$y = d(U,V)\cdot sin(U)$$, $$z = R\cdot sin(\frac{2\cdot\pi\cdot d(U,V)}{2\cdot \pi\cdot R}\cdot 2\cdot \pi) = R\cdot sin(\frac{2\cdot\pi\cdot d(U,V)}{R})$$
)
Surface metrics distances ( breadcrumbs : surface integrals, minimal path (Dijkstra's algorithm when discrete), geodesics :
Constraints on the surface : sphere, donut(tore) + iso-distance
OR-tools, Scilab Scicos
Example 1 : 3 dots iso-distance on sphere gives a triangle
Example 2 : known a cone equation, find equilateral triangle whose $$(max za - min zc) > 10$$ for instance
or .........................................................whose $$a=(xa,ya,za)$$
Example 3 : known 5 locations on Earth, find 3 36000 altitude satellites, so that average distance(sum(sum, by satellites of distances)) is minimal
Example 4 : $$1 < d(x,y) < 2$$ $$\equiv$$ $$d(x,y)>1$$ AND $$d(x,y)<2$$ $$\equiv$$
$$
\left\{
\begin{array}{c}
d(x,y)>1 \\
d(x,y)<2 \\
\end{array}
\right.
$$
... Relative to CP i.e. Constraint Programming(Python Google ORtools, swi-prolog), graphs, GPS(Earth locations, satellites best spread), CSP and COP
Example 5 : density(-> continuum : discontinuous to continuous link through dot of highest density ~ shortest path (Dijkstra,...)), chemistry Pauli orbitals distributions (->stochastics)
Example 6 : Penrose related : with France frontiers(), find gravity point, 100km x 100km squares (or less by frontiers) so that number of squares is minimal, or average real polygone surface is max, and so on.
Example 7 : 5 iso distance dots on a donut torus, with first one not given on inside circumference
- Subfamily of solving
- discrete equations
- implicit equations
-> Boolean graphs (when not easyly solvable, use brute force pixel loops -> inequalities -> dots are coarse summed up to lines ( $$x^2 + y^2=1$$) or area patterns)
-
Astronomy where stars can be related to dots
-
Fractals
By Peter MOUEZA
Index des ressources